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Abstract

Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-
modality models frozen and learns only a small cross-attention bridge between them. We connect
V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by
inserting compact video cross-attention after the model’s existing text cross-attention, so prompts
set global semantics while video refines timing and local dynamics. The frozen backbones retain
strong marginals (video; audio given text) and the bridge learns the audio–video dependency
needed for synchronization — without retraining the audio prior. To cut memory and stabilize
training, we pool video tokens before conditioning. On curated video–audio benchmarks, Foley
Control delivers competitive temporal and semantic alignment with far fewer trainable parameters
than recent multi-modal systems, while preserving prompt-driven controllability and production-
friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining).
Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio
modalities (e.g., speech).

1 Introduction

Sound design is central to immersion in film, games, and VR: subtle contact sounds, material cues,
and timing-sensitive transients anchor visual events in a coherent perceptual scene. Although recent
video-to-audio (V2A) systems have advanced fidelity and semantic coverage, they frequently entail
heavy training pipelines or control stacks that limit practicality in production settings [5, 26, 32].

Broadly, prior work splits into two paths. Adapter-based methods (e.g., FoleyCrafter [37]) plug
semantics and timing controllers into strong T2A generators, improving alignment without retraining
large backbones. By contrast, end-to-end foundation V2A models demand far more data with tightly
aligned video–audio pairs to learn the audio prior, cross-modal mapping, and temporal synchrony
simultaneously — driving curation of massive paired corpora with heavy filtering (onset heuristics,
CLAP/ImageBind screening, alignment checks) and representation-alignment losses [5, 26]. Scale is
further hampered by real-world noise: dubbing, off-screen sources, background music, and imprecise
timestamps degrade supervision and underrepresent long-tail events. We instead freeze a strong T2A
backbone and learn a thin video–audio bridge, attaining competitive alignment with far less data: our
corpus uses ˜700k Kinetics–700 clips, whereas HunyuanVideo– Foley trains on ˜100k hours (≈ 3.0×107

twelve–second segments), i.e., ∼ 43× more paired data.
At the other extreme, multimodal diffusion transformers (e.g., MMAudio [5], HunyuanVideo-

Foley [26] and others [4] [28] [13]) jointly train audio, video, and sometimes text streams end-to-end.
Such approaches achieve impressive synchronization and coverage, but at the cost of massive curated
datasets, high compute budgets, and reduced modularity.

This paper proposes Foley Control, a lightweight framework that targets the same alignment
benefits while preserving the practicality of frozen generative backbones. Our key idea is to connect V-
JEPA2 [1] video embeddings to a frozen Stable Audio Open DiT [7] by inserting collaboration layers—
compact, video-conditioned cross-attention modules placed inside existing transformer blocks. This
placement is deliberate: video cross-attention is applied after the model’s original text cross-attention,
so text prompts first establish high-level semantics and structure, and video then refines temporal
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grounding and localized dynamics. By freezing the remaining parameters of the DiT blocks, we retain
the strong generative prior learned from large-scale audio–text corpora and focus the trainable capacity
on cross-modal synchronization rather than relearning audio generation.

From an architectural perspective, we employ a streamlined integration strategy in which V-JEPA2
embeddings are pooled into a compact grid representation and injected through lightweight cross-
attention modules placed inside the frozen DiT blocks. This design ensures that video information
refines the audio latent trajectory without altering the established text-conditioning pathway. Rotary
position embeddings (RoPE) [27] further enhance temporal grounding by providing ordering signals
across modalities, eliminating the need for heavier synchronization mechanisms. The resulting archi-
tecture remains compact yet expressive, scaling effectively to longer contexts and diverse scenes while
preserving prompt-driven controllability.

Taken together, these elements provide a practical route to high-quality Foley generation: reuse
a strong, frozen T2A backbone for audio fidelity and prompt control, and add just enough trainable
capacity to align timing and dynamics to the video.

2 Related Work

FoleyCrafter. Early neural Foley systems learn to synthesize sounds that are semantically and
temporally aligned with visual inputs, but often depend on limited audio–visual data and struggle
to preserve high audio fidelity. FoleyCrafter [37] addresses this by plugging lightweight controllers
into a strong text-to-audio backbone, thereby retaining audio quality while improving video–audio
alignment. Concretely, it builds on a U-Net–based V2A generator (in the spirit of AuFusion [34]) and
employs multiple control streams: a semantic adapter that injects video/text features throughout the
U-Net (early, middle, and late blocks), and a timestamp/onset controller that is applied primarily in
late layers to sharpen synchronization around transient events. Event timing cues are provided by
a separate timestamp detection model , whose outputs modulate the diffusion steps to align onsets
without altering the pretrained backbone. This division of labor—frozen backbone for fidelity, semantic
control across the network, and late-layer timing refinement—yields stronger alignment under modest
compute.

MMAudio. MMAudio [5] introduces a unified, from-scratch multimodal training paradigm that
jointly leverages audio–text and audio–video pairs under a conditional flow-matching objective. A
hybrid architecture—multimodal DiT blocks followed by audio-only blocks—supports scalable data
mixing and strong semantic alignment, while a synchronization module operating via high frame-rate
visual features further improves temporal precision. A related approach, HunyuanVideo-Foley [26],
scales this paradigm with a massive curated text–video–audio dataset and a dual-stream multimodal
diffusion transformer that fuses audio–video attention with text cross-attention. Additionally, it in-
troduces a representation-alignment loss (REPA[36]) that steers the audio DiT’s hidden states toward
self-supervised audio embeddings, enhancing fidelity and stability, and employs a DAC-style autoen-
coder for higher-quality waveform reconstruction.

Stable Audio Open. Stable Audio Open [7] is a foundation text-to-audio model based on latent
diffusion, combining a fully convolutional VAE, T5-based text conditioning, and timing embeddings
to enable efficient generation of variable-length 44.1kHz stereo signals up to 95 seconds. Despite
operating in a compressed latent space, it achieves state-of-the-art fidelity on both music and sound
effects, offering a strong frozen backbone for adaptation in multimodal alignment tasks. Early text-
to-audio (T2A) diffusion models such as DiffSound [35], AudioGen [17], AudioLDM [19], and Make-
An-Audio [9] established the latent diffusion paradigm for sound synthesis. Stable Audio Open [7]
extends this approach with high-fidelity 44.1 kHz generation and strong semantic conditioning, while
TangoFlux [10] explores fast flow-matching variants for text-conditioned audio generation.

V-JEPA2. V-JEPA2 [1] is a large-scale self-supervised video model designed to learn predictive rep-
resentations of the physical world from internet-scale video. It extends the joint-embedding predictive
architecture (JEPA) by scaling pretraining to over one million hours of video and up to one billion
parameters, using a masked feature prediction objective in representation space. Unlike generative ap-
proaches that reconstruct pixels, V-JEPA2 focuses on predictable dynamics such as motion trajectories,
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yielding stronger representations for action understanding, anticipation, and temporal reasoning. The
model achieves state-of-the-art results on motion understanding benchmarks (e.g., 77.3 top-1 accuracy
on Something-Something v2) and human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100),
while also supporting downstream video question-answering when aligned with large language models.
These properties make V-JEPA2 a compelling choice for video-conditioned generative tasks such as
Foley synthesis, where fine-grained motion cues and temporal structure are critical

Other related V2A / audiovisual models. Several recent works also explore video-to-audio or
joint audiovisual generation along different tradeoffs [22, 37, 21, 33, 5, 20, 26].

For instance, FRIEREN proposes rectified flow matching in spectrogram latent space to regress a
conditional transport vector field, enabling few-step or even one-step audio sampling with strong video-
audio alignment [33]. UniVerse-1 fuses pretrained video and music experts via a stitching-of-experts
approach to jointly generate synchronized audio and video [31]. ThinkSound frames audio generation
as a reasoning process via chain-of-thought, decomposing generation into stages of Foley synthesis,
object-centric refinement, and editing, guided by a multimodal LLM [20]. More recently, DeepSound-
V1 also introduces stepwise CoT reasoning in video→audio synthesis [18], and YingSound uses a
multimodal CoT controller plus conditional flow matching for sound effect generation in few-shot
settings [3]. These works complement ours: while they may retrain large joint models or adopt
reasoning-based pipelines, our approach uniquely freezes a strong text–audio backbone and learns
only a light cross-modal bridge for alignment.

2.1 Architectural Positioning of our approach

Our approach differs from prior adapter-based frameworks for adding multi-modality to frozen single
modality models such as FoleyCrafter [37] or Stylecodes[25], which attach specialized controllers to a
U-Net backbone for alignment. While such modular control can improve synchronization under limited
data, it partitions the conditioning pathways – forcing each module to learn its own alignment rather
than leveraging the pretrained model’s holistic structure.

In contrast, Foley Control adopts a more unified transformer-based design that integrates video
conditioning directly within the frozen diffusion transformer’s existing attention layers. This avoids
separate control heads and allows cross-modal signals to propagate through the same representational
channels as text, better aligning with modern large-scale pretrained architectures such as Stable Audio
Open [7]. Results from large-scale modeling [12] indicate that architectures which enable pretrained
components to co-adapt through shared attention tend to harness scale and generalize more effectively
than systems with manually partitioned control modules.

At the other end of the spectrum, fully multi-modal diffusion transformers such as MMAudio [5]
and HunyuanVideo-Foley [26] extend this idea further by training end-to-end across text, video, and
audio streams. These models demonstrate even higher efficiency and expressivity when massive, cu-
rated datasets are available, but they require orders of magnitude more paired data and compute to
converge. Foley Control therefore strikes a middle ground: it retains the scalability and representa-
tional advantages of transformer conditioning while remaining data-efficient by freezing the text–audio
prior and learning only lightweight video–audio bridges.

3 Method

3.1 Preliminaries

Our approach builds upon two key components: a frozen audio generation backbone and pretrained
video encoders for semantic grounding. We briefly review the necessary background.

Audio Latent Diffusion. We adopt the Stable Audio DiT [7] as the generative backbone. Stable
Audio is a diffusion-based model operating in the latent space of an audio autoencoder, enabling high-
fidelity waveform synthesis at a sampling rate of 44.1 kHz. Given conditioning embeddings (e.g., text
or duration), the model learns to denoise latent audio representations over a fixed number of timesteps.
In our framework, the backbone remains fully frozen, ensuring training efficiency and stability.
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Video Representation Learning. For visual grounding, we leverage V-JEPA2 [1], a transformer-
based video encoder pretrained with predictive objectives. Given a sequence of frames, V-JEPA2
produces spatiotemporal patch-level embeddings, which can be pooled into tubelets or spatial grids
(e.g., 4×4, 8×8) to capture both global dynamics and localized motion cues. These embeddings serve
as key tokens for cross-modal alignment with the audio latent sequence.

Problem Setup. Formally, given a video segment V = {f1, . . . , fT }, our goal is to synthesize an
aligned audio waveform x ∈ RL, where L corresponds to the clip duration at 44.1 kHz. The video
encoder maps V to a sequence of tokens v ∈ RSv×Dv , while the audio diffusion model operates on
latent sequences a ∈ RSa×Da .

3.2 Dataset Curation

Training high-quality video-to-audio models requires large-scale, temporally aligned multimodal data.
To this end, we constructed a dataset derived from the Kinetics-700 dataset [6] , which provides
a diverse set of human action videos in a wide range of everyday activities. Since not all videos
contain meaningful or relevant sound events, we applied a data curation pipeline similar to that used
by HunyuanVideo-Foley [26] . Since the dataset was already partitioned into clips, we first filtered out
any silent samples from the dataset, we then used ImageBind [8] and Meta Audiobox Aesthetics [29]
scores to filter out both low quality and conceptually distinct samples, ensuring high-fidelity and
semantically consistent audio–video pairs similar to the filtering strategy of HunyuanVideo-Foley [26].

3.3 Framework Overview

Our framework is based on Stable Audio Open[7], a diffusion transformer (DiT) model for high-
fidelity text-to-audio generation. Raw waveforms x ∈ RL are encoded by an audio VAE into latent
sequences a ∈ RSa×Da , where Sa is the sequence length and Da the latent dimensionality. The DiT
backbone performs latent diffusion using the v-prediction parameterization: at a random step t, we
corrupt the clean latent a0 to at and train the model vθ(at, t, cond) to predict the velocity that guides
at back toward a0. At inference, we integrate the sampler using the predicted velocities to recover a0,
then decode to waveform via the VAE.

Diffusion Transformer (DiT). At its core, Stable Audio Open employs a stack of transformer
blocks designed for sequence modeling in the latent space. Each block incorporates multi-head self-
attention, feed-forward networks, and cross-attention. Text embeddings, obtained from a pretrained T5
encoder [24], are injected through cross-attention, enabling semantic control over the generated audio.
This design allows fast parallel sampling and supports long-context audio generation at 44.1 kHz.

Freezing Strategy. In our framework, the entire Stable Audio Open backbone—including the VAE
encoder/decoder, DiT blocks, and T5 conditioning layers—remains frozen. This design choice ensures
stable optimization, reduces computational cost, and preserves the strong generative prior acquired
from large-scale audio–text pretraining.

Additional Cross-Attention Layers To integrate video semantics without disrupting the pre-
trained frozen stable audio model, we insert video cross-attention in every DiT block, immediately
after the backbone’s text cross-attention and before the feed-forward network (SA → Tx-CA → Vid-
CA → FFN). Audio latents act as queries and video tokens as keys/values; the rest of the block
(including the text pathway) remains frozen.

Tiny MLP adapter on the video path. Before forming K,V , we pass the (detached) video
features through a lightweight two-layer MLP with GELU and residual addition.

RoPE scheme We use standard rotary position embeddings (RoPE) [27]. RoPE is applied inde-
pendently to audio queries and video keys: each modality computes its own phase from its sequence
positions, and the rotations are not shared across modalities. Concretely, after linear projection we ro-
tate Q and K in-place along their last dimension (per head) prior to attention. This preserves relative
temporal phase information, helping the model align video motion and audio onsets more precisely.
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Figure 1: Forward flow: frames → V–JEPA2 → adapter (video vCA), prompt → text encoder
(Tx–CA), and noise (latent init) entering the DiT at the same level

While prior work [5, 11] employs specialized synchronization modules (e.g., SyncFormer) for cross-
modal alignment, we found RoPE sufficient for stable temporal correspondence without additional
alignment networks in our adapter setting.

Cross-attention placement. Our placement choice is inspired by Kong et al. [15], which aug-
ments each DiT block with an audio cross-attention layer inserted after the text cross-attention. Fol-
lowing this design, we adopt the same ordering for our video cross-attention so that prompts establish
global semantics before modality-specific timing and dynamics are injected. Unlike their setup, which
employs label-aware RoPE (L-RoPE) to distinguish multiple audio streams, we found standard RoPE
sufficient for stable and precise cross-modal alignment in our single-stream video-to-audio configura-
tion.

Scope of training. Only the parameters introduced by this sublayer are trainable (video MLP
adapter, Wq, Wkv, Wo, attention weights, and local norms); all backbone weights, the audio VAE, and
the text pathway remain frozen. Unless otherwise stated, each DiT block has its own (non-shared) set
of sublayer parameters.

V–JEPA2 Embedding Pooling. We condition collaboration cross-attention on V–JEPA2 tokens
derived from 16FPS video streams. For each 4 s segment, we sample 64 frames and encode them
with V–JEPA2. To obtain a compact sequence, we pool each effective frame into a single token (the
encoder operates with stride 2, so one effective frame corresponds to two input frames). This results
in 32 effective frames per 4 s segment and thus 32 tokens per segment. To bound computational cost,
we restrict inputs to a maximum of 12 s and concatenate the segment-level embeddings in temporal
order. Originally, we experimented with spatial grids such as 8×8 (64 tokens per frame) and 16×16
(256 tokens per frame), but found that reducing to a single pooled token per frame preserved salient
spatial context while substantially improving efficiency and stabilizing optimization.

4 Experiments

4.1 Experimental Setup

We evaluate our proposed joint audio–video fine-tuning framework on the curated Kinetics-700 dataset
(Section 3.2), using the large filtered corpus for pretraining and the high-quality SFT subset for
supervised alignment. We train all the models for the experiment with a batch size of 12, using a
frozen StableAudioDiT backbone and V-JEPA2 embeddings; only the collaboration layers are updated.
We adopt the original Stable Audio Open velocity-prediction training setup and apply token-drop
regularization with 10% probability. For evaluation, we use the Meta Movie Audio Bench test set
dataset.
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4.2 Ablation Studies

We analyze the impact of video embedding granularity on model performance through a series of
controlled ablations.

Pooling Strategies. We compare two ways of aggregating V-JEPA2 patch tokens into video to-
kens: (i) frame pooling (1 token per two frames), (ii) grid8 pooling (8×8 tokens per frame, 64 per
frame). Frame pooling offers maximum computational efficiency, while grid-based schemes capture
richer spatial and motion cues at higher cost.

We report the KL-PANNs metric computed between generated and ground-truth audio event poste-
riors on the MovieGenBench test set, without text prompts, to isolate the effect of visual conditioning.

To reduce compute, all ablation runs are trained on a fixed 30% random subset of our curated
Kinetics–700 training split; the same subset is used for both pooling variants, with identical hyperpa-
rameters , schedules and seed across conditions.

Table 1: Ablation study comparing pooling strategies over training steps using the KL-PANNs metric
(lower is better) on the Kinetics-700 validation subset without text guidance.

Training Steps Grid8 Single Pooled Embedding
50,000 3.220921 3.222953
100,000 3.145059 3.188678
200,000 3.153171 3.194564
300,000 3.104110 3.130133
400,000 3.119460 3.111351

Results and Discussion. As shown in Table 1 and Figure 2, the lower-resolution Single pooled
embedding configuration achieves performance on par with, or slightly better than, the grid8 em-
bedding variant. Despite a substantial reduction in visual token count—and therefore compute and
memory use—no meaningful loss in temporal alignment or perceptual fidelity was observed. Across
400k training steps, the metrics differ by less than 0.03, indicating that the mid-level spatial resolution
of the single-pooled embeddings captures sufficient motion and context cues for Foley synchronization.
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Figure 2: Ablation trends across training steps for different pooling strategies, evaluated with the
KL-PANNs metric (lower is better) on the Kinetics-700 validation subset without text guidance. All
runs were trained on a fixed 30% subset of the curated training data.

4.3 Comparison to Existing Work

We compare our framework against recent state-of-the-art video-to-audio generation systems, including
MMAudio [5], HunyuanVideo-Foley [26], ThinkSound, and FRIEREN. All baselines represent distinct
strategies for bridging video and audio modalities, ranging from fully joint multimodal diffusion training
to modular adapter-based control. To ensure comparability, we evaluated all models under a consistent
protocol using the MovieGenBench[23] benchmark, which emphasizes long-form cinematic scenes
with diverse dynamics and complex soundscapes.
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Evaluation Protocol. Each method generates audio at 44.1 kHz, conditioned on video frames and
corresponding text prompts when supported. For our model, the Stable Audio DiT backbone, VAE,
and CLAP text encoder remain entirely frozen; only the lightweight collaboration layers and align-
ment heads introduced in Section 3 are trained. This setup isolates the effect of our proposed video
bridge while maintaining a fixed generative prior across all experiments. All systems are evaluated on
the same MovieGenBench test split, using synchronized video clips with corresponding ground-truth
soundtracks. For metric computation, preprocessing, and dataset loaders, we used the
MMAudio evaluation/testing repository1 to ensure consistent scoring across methods.

Metrics. Following the official benchmarking suite [26], we report a comprehensive set of perceptual
and statistical metrics capturing complementary aspects of generation quality, including Fréchet Dis-
tance and KL divergence using PANNs [14] and PaSST [16], cross-modal consistency via ImageBind [8]
and synchronization via Synchformer [11]

• ImageBind Score (IB) quantifying audio–visual semantic consistency via cosine similarity
between audio and image frame embeddings extracted by ImageBind[8].

• Mean KL Divergence (KL) between classifier-based audio event posteriors, using PaSST
(KL-PaSST[16]) and PANNs (KL-PANNs). Lower values denote better distributional consis-
tency.

• Fréchet Distance (FD) between generated and real audio embeddings, computed with three
pretrained encoders: PaSST (FD-PaSST), PANNs (FD-PANNs), and VGGish (FD-VGG).
Lower values indicate closer alignment between the generated and reference distributions.

• DeSync Score evaluating temporal misalignment (in seconds) predicted by Synchformer[11];
lower values indicate better synchronization.

Baselines.

• MMAudio [5]: a fully multimodal diffusion transformer jointly trained on text, audio, and video
under a conditional flow-matching objective.

• HunyuanVideo-Foley [26]: a large-scale multimodal DiT trained end-to-end on curated text–
video–audio data, incorporating representation-alignment losses for temporal precision.

• ThinkSound [20]: a modular system combining CoT reasoning with pretrained encoders and a
controllable diffusion backbone, designed for robustness to domain variation.

• FRIEREN [33]: an autoregressive video-to-sound system emphasizing temporal causality and
synchronization through hierarchical attention mechanisms.

• FoleyCrafter [37]: an adapter-based approach that enhances synchronization by injecting se-
mantic and temporal controllers into a pretrained text-to-audio backbone, improving alignment
without retraining large generative models.

Fairness and Implementation Details. All comparisons use identical input video frame rates
and duration limits. During evaluation, each model produces a single audio sample per clip without
post-processing, ensuring consistency across systems and avoiding any external enhancement or mixing
effects. We do not include comparisons against V-AURA [30], as the method is constrained to clips
of 2.5 seconds in duration, which makes it unsuitable for evaluation on longer-form datasets such as
MovieGenBench that emphasize multi-second temporal dependencies and ambient context.

1https://github.com/facebookresearch/mmaudio/tree/main/eval
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MovieGenBench. We test on the MovieGenBench dataset [23], which emphasizes cinematic
sound design and long-range temporal dependencies. This benchmark evaluates generated audio
against a strong text-to-video-with-audio (T2VA) reference model, providing a measure better aligned
with large-scale multimodal systems such as MMAudio [5] and HunyuanVideo-Foley [26], which ex-
cel at generating ambient, scene-level audio. Because MovieGenBench includes extensive background
and environmental textures, it favors models that maintain coherent ambiance and long-horizon con-
sistency rather than isolated transients. In contrast, VGGSound [2] consists primarily of short,
event-driven Foley-style clips that emphasize localized synchronization and sound event accuracy. We
also omit comparisons with V-AURA [30], a video-to-audio model limited to generating 2.5-second
clips, which makes it unsuitable for long-form benchmarks like MovieGenBench. As shown in Table 2,
Foley Control performs competitively under these more demanding, ambient conditions.

Kling-Foley AudioEval. To avoid train–evaluation contamination, we do not report results on
the Kling-Foley AudioEval benchmark introduced by Wang et al. [32]. Our training corpus included
material overlapping or closely related to that evaluation split, which could yield inflated or non-
comparable scores.

Table 2: Comparison on the MovieGenBench dataset.
System KL-PANNs ↓ KL-PaSST ↓ IB ↑ FD-VGG ↓ FD-PANNs ↓ FD-PaSST ↓ DeSync ↓
FRIEREN 3.58 3.89 0.14 5.65 59.04 560.91 0.30
MMaudio 2.52 2.35 0.25 4.14 37.60 343.24 0.29
HunyuanVideo-Foley 2.58 2.11 0.30 7.00 31.28 373.62 0.31
Foley Control (ours) 2.93 2.59 0.20 5.89 31.10 383.99 0.32
ThinkSound 3.16 2.90 0.18 6.62 33.62 468.25 0.30
FoleyCrafter 1.11 1.29 0.26 6.94 40.70 493.08 0.33

Training Efficiency. While large multimodal diffusion systems such as HunyuanVideo-Foley train
end-to-end for 200k–700k steps on roughly 100k hours of curated text–video–audio data using
128×H20 GPUs and an effective batch size of 2048, our Foley Control bridge trains for only
400k steps with an effective batch size of 384. In contrast to MMAudio and ThinkSound, which
use a comparable amount of paired audio–video data but additionally rely on extensive audio-only
pretraining to learn their generative priors, Foley Control requires no such auxiliary corpus—leveraging
instead a frozen Stable Audio backbone trained independently on text–audio data. Compared to
HunyuanVideo-Foley, Foley Control operates with nearly two orders of magnitude less paired
data and compute, yet achieves competitive synchronization and semantic alignment, underscoring
the efficiency of the lightweight cross-modal adapter strategy. Similarly, FoleyCrafter [37] demonstrates
that adapter-based designs can deliver strong alignment and controllability by keeping a pretrained
T2A backbone frozen and learning only compact temporal and semantic controllers, employing a more
elaborate adapter architecture built atop a U-Net–based generative model.

5 Conclusion

We introduced Foley Control, a lightweight bridge that brings video guidance to a frozen text-
to-audio generator by inserting compact, trainable collaboration layers after the model’s existing text
cross-attention. With V-JEPA2 embeddings, token pooling, and RoPE-based ordering cues, our design
preserves the strengths of the audio prior and prompt controllability while adding the temporal control
needed for Foley.

Across a curated data corpus and evaluation on MovieGenBench, the approach delivers competitive
semantic and temporal alignment while training only a small fraction of parameters compared to fully
multimodal systems. Ablations show that aggressively pooled video tokens match the performance of
denser grid features, substantially reducing compute and memory without degrading synchronization.

Practically, the framework remains modular: encoders or the T2A backbone can be swapped or
upgraded without end-to-end retraining, which is attractive for production settings where models
evolve, additional control modules are added and latency/VRAM budgets matter.
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Limitations and Future Work. Our current setup caps video duration and conditions on pooled
tokens, which may miss rare fine-grained spatial cues. The method also assumes clean inputs and does
not explicitly model spatial (binaural/ambisonic) acoustics or streaming/online alignment. Future
work may include adaptive tokenization (learned pooling or budget-aware routing), longer-context
conditioning, more varied data, spatial audio generation, robustness to in-the-wild edits and back-
ground music, and extending the bridge to other audio modalities such as speech and dialogue.
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